Answer:
Part I: C. statistic
Part II: 95% confidence interval = (0.130, 0.270)
Step-by-step explanation:
Part I: The proportion of the 125 people who are living below the poverty line, 25/125, is which of the following: statistic, as it is a measure taken from the sample.
Part II:
We have to calculate a 95% confidence interval for the proportion.
The sample proportion is p=0.2.
[tex]p=X/n=25/125=0.2[/tex]
The standard error of the proportion is:
[tex]\sigma_p=\sqrt{\dfrac{p(1-p)}{n}}=\sqrt{\dfrac{0.2*0.8}{125}}\\\\\\ \sigma_p=\sqrt{0.00128}=0.035777[/tex]
The critical z-value for a 95% confidence interval is z=1.96.
The margin of error (MOE) can be calculated as:
[tex]MOE=z\cdot \sigma_p=1.96 \cdot 0.035777=0.070122[/tex]
Then, the lower and upper bounds of the confidence interval are:
[tex]LL=p-z \cdot \sisgma_p = 0.2-0.070122=0.129878\\\\UL=p+z \cdot \sisgma_p = 0.2+0.070122=0.270122[/tex]
The 95% confidence interval for the population proportion is (0.130, 0.270).