Respuesta :
Answer:
Magnetic force is equal to [tex]1.37\times 10^{-11}N[/tex]
Explanation:
We have given electron is accelerated with a potential difference of 81700 volt.
Magnetic field B = 0.508 T
Angle between magnetic field and velocity [tex]\Theta =90^{0}[/tex]
Mass of electron [tex]m=9.11\times 10^{-31}kg[/tex]
Charge on electron [tex]e=1.6\times 10^{-19}C[/tex]
By energy conservation.
[tex]\frac{1}{2}mv^2=qV[/tex]
[tex]\frac{1}{2}\times 9.11\times 10^{-31}\times v^2=1.6\times 10^{-19}\times 81700[/tex]
[tex]v=169.4\times 10^6m/sec[/tex]
Magnetic force on electron
[tex]F=qvBsin\Theta[/tex]
[tex]F=1.6\times 10^{-19}\times 169.4\times 10^6\times 0.508\times sin90^{\circ}[/tex]
[tex]=1.37\times 10^{-11}N[/tex]
Answer:
Explanation:
After acceleration under potential difference , velocity v acquired can be calculated by the following expression
V e = 1/2 m v² ;
V is potential under which electron with mass m and charge e is accelerated to velocity v .
81700 x 1.60218 x 10⁻¹⁹ = .5 x 9.11 x 10⁻³¹ x v²
v² = 28737 x 10¹²
v = 169.52 x 10⁶ m /s
Force = Bev , B is magnetic field , e is charge on lectron and v is its velocity
= .508 x 1.60218 x10⁻¹⁹ x 169.52 x 10⁶
= 128 x 10⁻¹³ N.