Answer: 0.887 g of [tex]MnO_2[/tex] should be added to excess HCl(aq).
Explanation:
According to ideal gas equation:
[tex]PV=nRT[/tex]
P = pressure of gas = 805 torr = 1.06 atm (760torr=1atm)
V = Volume of gas = 235 ml = 0.235 L
n = number of moles = ?
R = gas constant =[tex]0.0821Latm/Kmol[/tex]
T =temperature =[tex]25^0C=(25+273)K=298K[/tex]
[tex]n=\frac{PV}{RT}[/tex]
[tex]n=\frac{1.06atm\times 0.235L}{0.0820 L atm/K mol\times 298K}=0.0102moles[/tex]
[tex]MnO_2(s)+4HCl(aq)\rightarrow MnCl_2(aq)+2H_2O(l)+Cl_2(g)[/tex]
According to stoichiometry:
1 mole of chlorine is produced by = 1 mole of [tex]MnO_2[/tex]
Thus 0.0102 moles of chlorine is produced by = [tex]\frac{1}{1}\times 0.0102=0.0102[/tex] moles of [tex]MnO_2[/tex]
Mass of [tex]MnO_2[/tex] =[tex]moles\times {\text {Molar mass}}=0.0102mol\times 87g/mol=0.887g[/tex]
0.887 g of [tex]MnO_2[/tex] should be added to excess HCl(aq).