Respuesta :
Answer:
[tex]I_o = 10^{-12} \frac{W}{m^2}[/tex] represent the minimum audible intensity by the humans
[tex] I= 10^{-7} \frac{W}{m^2}[/tex] represent the intensity for the dinner conversation
And replacing this into the formula we got:
[tex] dB = 10 log_{10} (\frac{10^{-7}}{10^{-12}})= 10 log_{10} (100000) = 50 dB[/tex]
So then the best answer for this case would be:
O 50 Db
Step-by-step explanation:
For this case we can use the following equation for decibels:
[tex] dB = 10 log_{10} (\frac{I}{I_o})[/tex]
Where:
[tex]I_o = 10^{-12} \frac{W}{m^2}[/tex] represent the minimum audible intensity by the humans
[tex] I= 10^{-7} \frac{W}{m^2}[/tex] represent the intensity for the dinner conversation
And replacing this into the formula we got:
[tex] dB = 10 log_{10} (\frac{10^{-7}}{10^{-12}})= 10 log_{10} (100000) = 50 dB[/tex]
So then the best answer for this case would be:
O 50 Db
The approximate loudness of a dinner conversation with a sound intensity of 10^-7 is -50Db
Logarithm functions
Given the general expression for calculating the loudness, L, measured in decibels (Db), of sound intensity, I as:
L = 10log(I0/I)
Given the following parameters
I0 = 10^-12 Wb/m²
I = 10^-7 Wb/m²
Substitute
L = 10log(10^-12/10^-7)
L = 10log(10^-5)
L = -5(10)log10
L = -50Db
Hence the approximate loudness of a dinner conversation with a sound intensity of 10^-7 is -50Db
Learn more on intensity here: https://brainly.com/question/14924672