Answer:
[tex]-b\leq a\leq b[/tex]
Step-by-step explanation:
When we have absolute value inequalities, there are specific way to find the solution sets.
If [tex]|a| < b[/tex] then [tex]-b<a<b[/tex]
If [tex]|a| >b[/tex] then [tex]a>b[/tex] or [tex]a<-b[/tex]
These definitions apply for the inequlity signs that involve equivalence.
If [tex]|a| \leq b[/tex] then [tex]-b\leq a\leq b[/tex]
If [tex]|a| \geq b[/tex] then [tex]a\geq b[/tex] or [tex]a\leq -b[/tex]
Therefore, the expression that completes the statement is
[tex]-b\leq a\leq b[/tex]