Answer:
[tex]\text{(h, f(h)) where h=} \dfrac{x_1+x_2}{2}\\[/tex] , ([tex]x_1,x_2,[/tex] zeros of the polynomial)
Step-by-step explanation:
Given the zeros of a polynomial, [tex]x_1\: and \:x_2[/tex], to determine the vertex, follow these steps.
Find the equation of symmetry x=h where [tex]h=\dfrac{x_1+x_2}{2}[/tex]
Substitute the value of h into the quadratic function f(x) to find the maximum of minimum point.
Therefore, the coordinate of the vertex will be:
[tex]\text{(h, f(h)) where h=} \dfrac{x_1+x_2}{2}[/tex]