Respuesta :
Answer:
area = 6[tex]\sqrt{14}[/tex] units²
Step-by-step explanation:
Given the 3 sides of a triangle, we can use Hero's formula to calculate the area (A)
A = [tex]\sqrt{s(s-a)(s-b(s-c)}[/tex]
where s s the semi perimeter and a, b , c the sides of the triangle
let a = 5, b = 9 and c = 10
s = [tex]\frac{a+b+c}{2}[/tex] = [tex]\frac{5+9+10}{2}[/tex] = [tex]\frac{24}{2}[/tex] = 12
A = [tex]\sqrt{12(12-5)(12-9)(12-10)}[/tex]
= [tex]\sqrt{12(7)(3)(2)}[/tex]
= [tex]\sqrt{504}[/tex]
= [tex]\sqrt{36(14)}[/tex]
= 6[tex]\sqrt{14}[/tex] units²
Answer:
Step-by-step explanation:
a = 5 units ; b = 9units ; c = 10 units
Semi perimeter = (a+b+c)/2 = (5+9+10)/2 = 24/2 = 12 units
s-a = 12 -5 = 7 units
s -b = 12 - 9 = 3 units
s-c = 12- 10 =2 units
[tex]Area=\sqrt{s*(s-a)(s-b)(s-c)}\\\\=\sqrt{12*7*3*2}\\\\=\sqrt{2*2*3*7*3*2}\\\\=2*3\sqrt{2*7}\\\\=6\sqrt{14}\\[/tex]
=6*3.742 = 22.452
= 22.45 square units