Respuesta :

Answer:

area = 6[tex]\sqrt{14}[/tex]  units²

Step-by-step explanation:

Given the 3 sides of a triangle, we can use Hero's formula to calculate the area (A)

A = [tex]\sqrt{s(s-a)(s-b(s-c)}[/tex]

where s s the semi perimeter and a, b , c the sides of the triangle

let a = 5, b = 9 and c = 10

s = [tex]\frac{a+b+c}{2}[/tex] = [tex]\frac{5+9+10}{2}[/tex] = [tex]\frac{24}{2}[/tex] = 12

A = [tex]\sqrt{12(12-5)(12-9)(12-10)}[/tex]

   = [tex]\sqrt{12(7)(3)(2)}[/tex]

   = [tex]\sqrt{504}[/tex]

   = [tex]\sqrt{36(14)}[/tex]

   =  6[tex]\sqrt{14}[/tex] units²

Answer:

Step-by-step explanation:

a = 5 units ; b = 9units ; c = 10 units

Semi perimeter = (a+b+c)/2 = (5+9+10)/2 = 24/2 = 12 units

s-a = 12 -5 = 7 units

s -b = 12 - 9 = 3 units

s-c = 12- 10 =2 units

[tex]Area=\sqrt{s*(s-a)(s-b)(s-c)}\\\\=\sqrt{12*7*3*2}\\\\=\sqrt{2*2*3*7*3*2}\\\\=2*3\sqrt{2*7}\\\\=6\sqrt{14}\\[/tex]

=6*3.742 = 22.452

= 22.45 square units