In a random sample of 41 criminals convicted of a certain​ crime, it was determined that the mean length of sentencing was 51 ​months, with a standard deviation of 11 months. Construct and interpret a 95​% confidence interval for the mean length of sentencing for this crime.

Respuesta :

Answer:

95​% confidence interval for the mean length of sentencing for this crime is [47.53 months , 54.47 months].

Step-by-step explanation:

We are given that in a random sample of 41 criminals convicted of a certain​ crime, it was determined that the mean length of sentencing was 51 ​months, with a standard deviation of 11 months.

Firstly, the pivotal quantity for 95% confidence interval for the population mean is given by;

                               P.Q. =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean length of sentencing = 51 months

             [tex]s[/tex] = sample standard deviation = 11 months

             n = sample of criminals = 41

             [tex]\mu[/tex] = population mean length of sentencing

Here for constructing 95% confidence interval we have used One-sample t test statistics as we don't know about population standard deviation.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-2.021 < [tex]t_4_0[/tex] < 2.021) = 0.95  {As the critical value of t at 40 degree of

                                               freedom are -2.021 & 2.021 with P = 2.5%}  

P(-2.021 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.021) = 0.95

P( [tex]-2.021 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]-2.021 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-2.021 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.021 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.021 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.021 \times {\frac{s}{\sqrt{n} } }[/tex] ]

                                               = [ [tex]51-2.021 \times {\frac{11}{\sqrt{41} } }[/tex] , [tex]51+2.021 \times {\frac{11}{\sqrt{41} } }[/tex] ]

                                              = [47.53 , 54.47]

Therefore, 95​% confidence interval for the mean length of sentencing for this crime is [47.53 months , 54.47 months].