Respuesta :
Answer:
Angle CAB=56 degrees
Step-by-step explanation:
See the attached image for the diagram.
In triangle BMC
|BM|=|MC| (Radii of a Circle)
Therefore, triangle BMC is an Isosceles Triangle; and
[tex]\angle CBM=\angle BCM=34^\circ[/tex]
[tex]\angle CBM+\angle BCM+\angle BMC=180^\circ$ (sum of \angle s$ in a triangle)\\34^\circ+34^\circ+\angle BMC=180^\circ\\\angle BMC=180^\circ-68^\circ=112^\circ[/tex]
Next,
[tex]\angle BMC=2\angle CAB $(Angle at center is twice angle at circumference)\\112^\circ=2\angle CAB\\\angle CAB=112^\circ \div 2\\\angle CAB=56^\circ[/tex]

Answer:
The answer is Angle CAB=56 degrees
Step-by-step explanation: