Answer:[tex]36^{\circ}[/tex]
Step-by-step explanation:
Given
[tex]\angle RSM =2\angle SRM[/tex]
suppose [tex]\angle RSM =\angle 2[/tex]
and [tex]\angle SRM=1[/tex]
So from figure
[tex]\angle SOM =\angle OMS=\angle 3[/tex]
and [tex]\angle OMS=\angle 0MR[/tex]
In triangle [tex]SOM[/tex]
[tex]\angle 2+\angle 3+\angle 3=180^{\circ}[/tex]
[tex] \angle 2+2\angle 3=180^{\circ}\quad \ldots(i)[/tex]
In triangle [tex]RSM[/tex]
[tex]\angle 1+\angle 2+\angle 3=180^{\circ}\quad \ldots(ii)[/tex]
and [tex]\angle 1=2\angle 2[/tex]
Using this and Substitute this value in [tex](ii)[/tex]
[tex]2\angle 2+\angle 2+\angle 3=180^{\circ}[/tex]
[tex]3\angle 2+\angle 3=180^{\circ}\quad \ldots(iii)[/tex]
Solving (i) and (iii) we get
[tex]2\angle 2=\angle 3[/tex]
Substitute in equation (i) we get
So [tex]\angle 2=\frac{180}{5} [/tex]
[tex]\angle 2=36^{\circ}[/tex]
So [tex]\angle RSM=\angle 2=36^{\circ}[/tex]