The frequency and wavelength of EM waves can vary over a wide range of values. Scientists refer to the full range of frequencies that EM radiation can have as the electromagnetic spectrum. Electromagnetic waves are used extensively in modern technology. Many devices are built to emit and/or receive EM waves at a very specific frequency, or within a narrow band of frequencies. Here are some examples followed by their frequencies of operation:

garage door openers: 40.0 MHz

standard cordless phones: 40.0 to 50.0 MHz

baby monitors: 49.0 MHz

FM radio stations: 88.0 to 108 MHz

cell phones: 800 to 900 MHz

Global Positioning System: 1227 to 1575 MHz

microwave ovens: 2450 MHz

wireless internet technology: 2.4 to 2.6 GHz

Which of the following statements correctly describe the various applications listed above? Check all that apply.

a.) All these technologies use radio waves, including low-frequency microwaves.

b.) All these technologies use radio waves, including high-frequency microwaves.

c.) All these technologies use a combination of infrared waves and high-frequency microwaves.

d.) Microwave ovens emit in the same frequency band as some wireless Internet devices.

e.) The radiation emitted by wireless Internet devices has the shortest wavelength of all the technologies listed above.

f.) All these technologies emit waves with a wavelength in the range of 0.10 to 10.0 m.

g.) All the technologies emit waves with a wavelength in the range of 0.01 to 10.0 km.

Respuesta :

Answer:

b.) All these technologies use radio waves, including high-frequency microwaves

d.) Microwave ovens emit in the same frequency band as some wireless Internet devices.

e.) The radiation emitted by wireless Internet devices has the shortest wavelength of all the technologies listed above.

f.) All these technologies emit waves with a wavelength in the range of 0.10 to 10.0 m.

Explanation:

For option D. The frequency range of microwave ovens is 2450 MHz = 2.4 GHz, which intersects with wireless internet technology with range of 2.4 to 2.6 GHz.

For E, wavelenght and frequency are inversely proportional. Wireless internet service has the greatest frequency band and hence the shortest wavelenght band.

For F, in all these radiations, the highest Freq is 2.6 GHz and the lowest is 40 MHz. Wavelenght is speed of light (3x10^8 m/s) divided by the frequency.

2.6 GHz = 2.6x10^9 Hz

Wavelenght = 3x10^8 ÷ 2.6x10^9 = 0.1 m

40 MHz = 40x10^6

Wavelenght = 3x10^8 ÷ 40x10^6 = 7.5 m