Answer:[tex]6.309\times 10^{12}[/tex]
Explanation:
Given
Intensity level of rock concert [tex]=130\dB[/tex]
Intensity level of Whisper [tex]=2\dB[/tex]
Intensity of sound is given by
[tex]I=10\log _{10}(\frac{I}{I_o})[/tex]
where [tex]I_o=10^{-12}\ watts/m^2[/tex]
and difference in the intensity of the two sounds is [tex]db=130-2=128\ dB[/tex]
and
[tex]db=10\log _{10} (\frac{I_1}{I_2})[/tex]
[tex]12.8=\log _{10}(\frac{I_1}{I_2})[/tex]
[tex]\frac{I_1}{I_2}=10^{12.8}[/tex]
[tex]\frac{I_1}{I_2}=6.309\times 10^{12}[/tex]
Thus intensity of Rock concert is [tex]6.309\times 10^{12}[/tex] times louder than that of a whisper