Respuesta :

the top one, hope this is right :)

Answer:

a.)

Step-by-step explanation:

[tex](\sqrt{12}+6)(-\sqrt{8}-\sqrt{2})[/tex]

Find the simplest radical form for [tex]\sqrt{12}[/tex]:

Find two numbers that multiply to 12, one of which is a perfect square:

[tex]\sqrt{12}=\sqrt{3*4}[/tex]

Separate:

[tex]\sqrt{3}\sqrt{4}[/tex]

Simplify by finding the square root:

[tex]\sqrt{3}*2=2\sqrt{3}[/tex]

Insert the simplified version:

[tex](2\sqrt{3}+6)(-\sqrt{8}-\sqrt{2})[/tex]

Find the simplest radical form of [tex]\sqrt{8}[/tex]:

Find two numbers that multiply to 8, one of which is a perfect square:

[tex]\sqrt{8}=\sqrt{4*2}[/tex]

Separate:

[tex]\sqrt{4} \sqrt{2}[/tex]

Simplify by finding the square root:

[tex]2\sqrt{2}[/tex]

Insert the simplified version:

[tex](2\sqrt{3}+6)(- 2\sqrt{2}-\sqrt{2})[/tex]

Sorry this is taking forever to type, here