Respuesta :

Answer:

u=6

Step-by-step explanation:

Use the 45°-45°-90° triangle theorem:

[tex]hypotenuse=\sqrt{2}*leg[/tex]

Insert the values:

[tex]6\sqrt{2} =\sqrt{2}*u[/tex]

Solve for u. Divide both sides by [tex]\sqrt{2}[/tex] and rationalize:

[tex]\frac{6\sqrt{2} }{\sqrt{2} } =\frac{\sqrt{2}*u }{\sqrt{2} }\\\\\frac{6\sqrt{2} }{\sqrt{2}} =u\\\\\frac{\sqrt{2}}{\sqrt{2}}*\frac{6\sqrt{2}}{\sqrt{2}}\\\\\frac{6\sqrt{4}}{\sqrt{4}}\\\\\frac{6*2}{2} \\\\6=u[/tex]

Finito.