The height of a right circular cylinder is 1.5 times the radius of the base. What is the ratio of the total surface area to the lateral (curved) surface area of the cylinder?

Respuesta :

Let r represent the radius of cylinder.

We have been given that the height of a right circular cylinder is 1.5 times the radius of the base. So the height of the cylinder would be [tex]1.5r[/tex].

We will use lateral surface area of pyramid to solve our given problem.

[tex]LSA=2\pi r h[/tex], where,

LSA = Lateral surface area of pyramid,

r = Radius,

h = height.

Upon substituting our given values in above formula, we will get:

[tex]LSA=2\pi r\cdot (1.5)r[/tex]  

Now we will find the total surface area of cylinder.

[tex]TSA=2\pi r(r+h)[/tex]

[tex]TSA=2\pi r(r+1.5r)[/tex]

[tex]TSA=2\pi r(2.5r)[/tex]

[tex]\frac{TSA}{LSA}=\frac{2\pi r(2.5r)}{2\pi r(1.5r)}[/tex]

[tex]\frac{TSA}{LSA}=\frac{2.5r}{1.5r}[/tex]

[tex]\frac{TSA}{LSA}=\frac{25}{15}[/tex]

[tex]\frac{TSA}{LSA}=\frac{5}{3}[/tex]

Therefore, the ratio of total surface area to lateral surface area is [tex]5:3[/tex].