Answer:
[tex]I'(t)=12I-0.004I^2, I_o=500[/tex]
Step-by-step explanation:
Population of the Community=3000
Let the number of infected=I
The number of uninfected=3000-I
The rate at which disease is spreading is proportional to the product of number of people infected and the number of people not yet infected.
[tex]\frac{dI}{dt}\propto I(3000-I) \\\frac{dI}{dt}=k I(3000-I)\\\frac{dI}{dt}=0.004 I(3000-I)\\$Let I_o$=Initial Number of Infected=500\\Therefore, the initial value problem is given as:\\I'(t)=12I-0.004I^2, I_o=500[/tex]