A 75.0-mLmL volume of 0.200 MM NH3NH3 (Kb=1.8×10−5Kb=1.8×10−5) is titrated with 0.500 MM HNO3HNO3. Calculate the pHpH after the addition of 13.0 mLmL of HNO3

Respuesta :

Answer:

The pH is   [tex]pH = 9.4[/tex]

Explanation:

From the question we are told that

         The volume of  [tex]NH_3[/tex] is  [tex]V_N = 75mL = 75 *10^{-3} L[/tex]

         The concentration of [tex]NH_3[/tex] is  [tex]C_N = 0.200M[/tex]

          The concentration of [tex]HNO_3[/tex] is [tex]C_H = 0.500 M[/tex]

          The volume of  [tex]HNO_3[/tex]  added  is [tex]V_H = 13mL = 13 *10^{-3 } L[/tex]

           The base dissociation constant is [tex]K_b = 1.8*10^{-5}[/tex]

The number of moles of [tex]HNO_3[/tex]  that was titrated can be mathematically represented as

                [tex]n__{H}} = C_H * V_H[/tex]

substituting values

                [tex]n__{H}} = 0.500* 13*10^{-3}[/tex]

                [tex]n__{H}} = 0.0065 \ moles[/tex]

The number of moles of [tex]NH_3[/tex] that was titrated can be mathematically represented as

                     [tex]n__{N}} = C_N * V_N[/tex]

substituting values

                          [tex]n__{N}} = 0.200 * 75*10^{-3}[/tex]

                          [tex]n__{N}} = 0.015 \ mole[/tex]

So from the calculation above the limited reactant is   [tex]HNO_3[/tex]

The chemical equation for this reaction is

         [tex]NH_3 + HNO_3 ------> NH^{4+} + NO^{3+}[/tex]

From the chemical reaction

  1 mole of [tex]HNO_3[/tex]  is  titrated with 1 mole of[tex]NH_3[/tex] to produce 1 mole of  NH^{4+}

So

    0.0065  moles of [tex]HNO_3[/tex]  is  titrated with 0.0065 mole of [tex]NH_3[/tex] to produce 0.0065 mole of  [tex]NH^{4+}[/tex]

So

  The remaining  moles of [tex]NH_3[/tex]  after the titration is

             [tex]n = n__{N}} - n__{H}}[/tex]

=>         [tex]n = 0.015 - 0.0065[/tex]

            [tex]n = 0.0085 \ moles[/tex]

Now according to Henderson-Hasselbalch equation the pH of the reaction is mathematically represented as

             [tex]pH = pK_a + log [\frac{NH_3}{NH^{4+}} ][/tex]

Where [tex]pK_b[/tex] is mathematically represented as

                [tex]pK_a = -log K_a[/tex]

Now        [tex]K_a = \frac{K_w}{K_b}[/tex]

Where [tex]K_w[/tex] is the ionization constant  of  [tex]NH_3[/tex] with value [tex]K_w = 1.0*10^{-14}[/tex]

Hence     [tex]K_a = \frac{1.0*10^{-14}}{1.8 *10^{-5}}[/tex]

               [tex]K_a = 5.556 * 10^{-10}[/tex]

Substituting this into the equation

                 [tex]pH = -log K_a + log [\frac{NH_3}{NH^{4+}} ][/tex]    

                  [tex]pH = log [\frac{\frac{NH_3}{NH^{4+}} }{K_a} ][/tex]        

substituting values

                [tex]pH = log [\frac{\frac{0.0085}{0.0065} }{5.556*10^{-10}} ][/tex]

                 [tex]pH = 9.4[/tex]