Kama25
contestada

Use the Law of Sines and/or the Law of Cosines to solve each triangle. Round to the Nearest tenth when necessary

(Unit 8: Right Triangles & Trigonometry, Homework 9: Law of Sines & Cosines: + Applications)​

Use the Law of Sines andor the Law of Cosines to solve each triangle Round to the Nearest tenth when necessary Unit 8 Right Triangles amp Trigonometry Homework class=

Respuesta :

Answer:

∠TSR= 48°

∠RTS = 107°  

∠TRS = 25°

Step-by-step explanation:

As we know in any triangles,

  • a, b and c are sides
  • C is the angle opposite side c

We can apply The Law of Cosines , which is:

[tex]c^{2}[/tex] = [tex]a^{2}[/tex] + [tex]b^{2}[/tex]  − 2ab cos(C)

In this situation we have:

  • RT = a = 11
  • TS = b = 6
  • SR = c = 14

Apply The Law of Cosines to find the angle of TRS

<=> [tex]6^{2} = 11^{2} + 14^{2} - 2*11*14*cos(TRS)[/tex]

<=> cos(TRS ) = ([tex]11^{2} + 14^{2} - 6^{2}[/tex]) / 2*11*14

<=> cos(TRS ) = 0.91

<=> ∠TRS  = 25°

Apply The Law of Cosines to find the angle of RTS

<=> [tex]14^{2} = 11^{2} + 6^{2} - 2*11*6*cos(RTS)[/tex]

<=> cos(RTS) =  ([tex]11^{2} + 6^{2} - 14^{2}[/tex]) / 2*11*6

<=> cos(RTS) = -0.29

<=> ∠RTS = = 107°  

So we can find the measure of angle TSR

∠TSR= 180° - 107°  - 25°

∠TSR= 48°

Using cosine law or sin law the angles of the triangle is as follows:

∠T = 107.2°

∠S = 48.6°

∠R = 24.2°

Using cosine rule,

Cosine rule

  • t² = r² + s² - 2rs cos T

Therefore,

14² = 6² + 11²- 2 × 6 × 11 cos T

196 - 36 - 121 = -132 cos T

cost T = 39 / - 132

T = cos⁻¹ -0.29545454545

T = 107.184793175

T = 107.2°

Sine rule

Therefore, let's find angle S using sine law

s / sin S = t / sin T

11  / sin S = 14 / sin 107.2

11 sin 107.2 = 14 sin S

sin S = 10.5080619833 / 14

S = sin ⁻¹ 0.75057585595

S = 48.6397771973

S = 48.6°

R = 18 0 - 48.6 - 107.2 = 24.2

R = 24.2°

learn more on triangle here: https://brainly.com/question/9838941