Respuesta :

Answer:

x = 2 and x = -2

Step-by-step explanation:

The quadratic formula of a quadratic of the form ax² + bx + c is:

x = [tex]\frac{-b+\sqrt{b^2-4ac} }{2a}[/tex] or x = [tex]\frac{-b-\sqrt{b^2-4ac} }{2a}[/tex]

Here, our equation is: 3x² - 18 = -6. Let's move all the terms to one side:

3x² - 12 = 0

a = 3 and c = -12. Notice that since there's no x term, b = 0.

Plug these into the quadratic formula:

x = [tex]\frac{0+\sqrt{0^2-4*3*(-12)} }{2*3}=\frac{\sqrt{144} }{6}=12/6=2[/tex]  

or

x = [tex]\frac{0-\sqrt{0^2-4*3*(-12)} }{2*3}=\frac{-\sqrt{144} }{6}=-12/6=-2[/tex]

So, x = 2 and x = -2.

Answer: x = -2, x = 2

Step-by-step explanation:

The quadratic formula:

[tex]x=\frac{-b+\sqrt{b^2-4ac} }{2a} \\\\AND\\\\x = \frac{-b-\sqrt{b^2-4ac} }{2a} \\[/tex]

You can find the variables a, b, and c in the standard form of a quadratic equation:

[tex]f(x)=ax^2 + bx+c[/tex]

Your equation:

[tex]f(x)=3x^2 + 0x -12[/tex]

The variables are:

a = 3

b = 0

c = -12

Substitute those for the variables in the quadratic formula:

[tex]x=\frac{-0+\sqrt{0-(4*3*-12)}}{2(3)} \\\\AND\\\\x=\frac{-0-\sqrt{0-(4*3*-12)}}{2(3)} \\[/tex]

You can simplify this to get:

[tex]x=\frac{-\sqrt{144}}{6} \\[/tex]

(or positive square root of 144.)

The square root of 144 is 12, and 12/6 = 2.

The x-values are -2 and 2.