Respuesta :
Answer:
b. Ag ( s )
d. Ni ( s )
[tex]E^0_{total}[/tex] = 2.97 V
Explanation:
The reduction potentials for the given four (4) electrodes are:
In the first cell:
[tex]Ag^+ + e^- \to Ag \ \ \ \ E^0 = 0.80 \ V \\ \\ \\ Al^{3+} + 3e^- \to Al \ \ \ \ E^0 = - 1.66 \ V[/tex]
In the second cell:
[tex]Zn^{2+} + 2e^- \to Zn \ \ \ E^0 = -0.76 \ V \\ \\ \\ Ni^{2+} + 2e^- \to Ni \ \ \ E^0 =-0.25 \ V[/tex]
Since the cells are connected in series :
[tex]E_{total } > 0[/tex]
Thus; Metal plated in the first cell = Ag
Metal plated in the second cell = Ni
The total potential [tex]E^0_{total}[/tex] = [tex]E^0 {cell \ 1} - E^0 _{cell \ 2}[/tex]
= (0.80 + 1.66 ) V - (0.25 +0.76 ) V
= 2.97 V
In the first cell, silver is plated and in the second cell, nickel is plated.
In a voltaic cell, there is the production of electrical energy via a chemical reaction. We have two cells;
- In the first cell, we have Al and Ag electrodes
- In the second cell we have Zn and Ni electrodes
In the first cell, silver is plated and the Ecell is 2.46 V while in the second cell, nickel is plated with Ecell of 0.51 V.
Learn more about voltaic cell: https://brainly.com/question/3930479