contestada

Consider a steel guitar string of initial length L=1.00L=1.00 meter and cross-sectional area A=0.500A=0.500 square millimeters. The Young's modulus of the steel is Y=2.0×1011Y=2.0×1011 pascals. How far ( ΔLΔLDelta L) would such a string stretch under a tension of 1500 newtons?

Respuesta :

Answer:

The extent to which it would stretch  is [tex]\Delta L = 0.015 \ m[/tex]

Explanation:

From the question we are told that

    The initial length is  [tex]L = 1.00m[/tex]

     The area is  [tex]A = 0.500 mm^2 = \frac{0.500}{1 *10^6} = 0.500*10^6 \ m^2[/tex]

     The Young modulus of the steel is  [tex]Y = 2.0*10^{11} Pa[/tex]

     The tension   is  [tex]T =1500 N[/tex]

The Young modulus is mathematically represented as

       [tex]Y = \frac{\sigma}{e}[/tex]

Where [tex]\sigma[/tex] is the stress which is mathematically represented as

           [tex]\sigma = \frac{F}{A}[/tex]  

Substituting values

            [tex]\sigma = \frac{1500}{0.500*10^{-6}}[/tex]  

           [tex]\sigma = 3.0*10^9 N/m^2[/tex]  

And  e is the strain which is mathematically represented as

            [tex]e = \frac{\Delta L}{L }[/tex]

Where [tex]\Delta L[/tex] The extension of the steel string

Substituting these into the equation above

             [tex]Y = \frac{3.0*10^9}{\frac{\Delta L}{L} }[/tex]

Substituting values  

           [tex]2.0 *10^{11} = \frac{3.0*10^9}{\frac{\Delta L}{L} }[/tex]

          [tex]\Delta L = \frac{3.0*10^9 * 1}{2.0 *10^{11}}[/tex]

         [tex]\Delta L = 0.015 \ m[/tex]