Respuesta :

Step-by-step explanation:

Given:

A+B+C= π

<=> 3A+3B+3C = 3π

<=> cos(3A+3B) = - cos3C

<=> cos3A.cos3B-sin3A.sin3B = - cos3C

<=> cos3A.cos3B = sin3A.sin3B  - cos3C (1)

similarly  apply for the other two angles, we have:

  • cos3B.cos3C = sin3B.sin3C  - cos3A  (2)
  • cos3C.cos3A = sin3C.sin3A  - cos3B  (3)

Grouping three equations, (1) + (2) + (3), we have:

<=> cos3A.cos3B+cos3B.cos3C+cos3C.cos3A = sin3A.sin3B + sin3B.sin3C + sin3C.sin3A - ( cos3A  + cos3B + cos3C )

= 1  

Hope it can find you well.