Answer:
1.45 mol
Explanation:
Given data
Step 1: Calculate the absolute temperature (Kelvin)
We will use the following expression.
[tex]K = \°C + 273.15\\K = 20\°C + 273.15 = 293K[/tex]
Step 2: Calculate the number of moles (n) of the gaseous sample
We will use the ideal gas equation.
[tex]P \times V = n \times R \times T\\n = \frac{P \times V}{R \times T} = \frac{3.98atm \times 8.77L}{\frac{0.0821atm.L}{mol.K} \times 293K} = 1.45 mol[/tex]