Answer:26.6 miles
Step-by-step explanation:
Given
Charlie distance to his destination is a linear function of total driving time
suppose distance d is related to time t as
[tex]d=mt+c\quad \ldots(i)[/tex]
at [tex]d=49\ miles[/tex] after [tex]t=15\ min[/tex]
Substitute in (i)
[tex]49=m(15)+c\quad \ldots(ii)[/tex]
at [tex]d=32.2\ miles[/tex] after [tex]t=39\ min[/tex]
[tex]32.2=m(39)+c\quad \ldots(iii)[/tex]
Solving (ii) and (iii) we get
[tex]m=-0.7[/tex]
substitute in eq (ii) we get
[tex]c=59.5[/tex]
so after [tex]t=47\ min[/tex]
[tex]d=(-0.7)47+59.5[/tex]
[tex]d=59.5-32.9=26.6\ miles[/tex]
So 26.6 miles is left to travel after 47 minutes