The energy of any one-electron species in its nth state (n = principal quantum number) is given by E = –BZ2 /n2 where Z is the charge on the nucleus and B is 18 2.180 10  J. a) Find the ionization energy of the Be3+ ion in its first excited state in kilojoules per mole. b) Find the wavelength of light given off from the Be3+ ion by electrons dropping from the fourth (n = 4) to the second (n = 2) energy levels.

Respuesta :

Explanation:

(a) The given data is as follows.

            B = [tex]2.180 \times 10^{-18} J[/tex]

            Z = 4 for Be

Now, for the first excited state [tex]n_{f}[/tex] = 2; and [tex]n_{i} = \infinity[/tex] if it is ionized.

Therefore, ionization energy will be calculated as follows.

         I.E = [tex]\frac{-Bz^{2}}{\infinity^{2}} - (\frac{-2.180 \times 10^{-18} J /times (4)^{2}}{(2)^{2}})[/tex]

              = [tex]8.72 \times 10^{-18} J[/tex]

Converting this energy into kJ/mol as follows.

           [tex]8.72 \times 10^{-18} J \times 6.02 \times 10^{23} mol[/tex]  

           = 5249 kJ/mol

Therefore, the ionization energy of the [tex]Be^{3+}[/tex] ion in its first excited state in kilojoules per mole is 5249 kJ/mol.

(b) Change in ionization energy is as follows.

         [tex]\Delta E = -Bz^{2}(\frac{1}{(4)^{2}} - {1}{(2)^{2}}) = \frac{hc}{\lambda}[/tex]

   [tex]\frac{hc}{\lambda} = 0.1875 \times 2.180 \times 10^{-18} J \times (4)^{2}[/tex]                

        [tex]\lambda = \frac{6.626 \times 10^{-34} \times 2.998 \times 10^{8} m/s}{0.1875 \times 2.180 \times 10^{-18} J \times 16}[/tex]

                     = [tex]303.7 \times 10^{-10} m[/tex]

or,                 = [tex]303.7^{o}A[/tex]

Therefore, wavelength of light given off from the [tex]Be^{3+}[/tex] ion by electrons dropping from the fourth (n = 4) to the second (n = 2) energy levels [tex]303.7^{o}A[/tex].