a cross section of three parallel wires each carrying a current of 20 A. The current in wire B is out of the paper, while that in wires A and C are into the paper. If the distance R = 15.0 mm,

what is the magnitude of the force on a 200 cm length of wire C?

Respuesta :

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The magnitude of force is  [tex]F_R} = 5.33 \ m N[/tex]

Explanation:

 From the question we are told that

          The current in wire A , B and C are   [tex]I _a = I_b =I_c = I= 20 A[/tex]

          The distance is [tex]R = 15.0mm = \frac{15}{1000} = 0.015m[/tex]

           The length of wire C is [tex]L_c = 200cm = \frac{200}{100} = 2 m[/tex]

Generally the force exerted per unit length  that is acting in between two current carrying conductors can be mathematically represented as

             [tex]\frac{F}{L} = \frac{\mu_o }{2 \pi} \cdot \frac{I_1 I_2 }{R}[/tex]

   Where [tex]\mu_o[/tex] is the permeability  of free space with a constant value of  

              [tex]\mu_o = 4 \pi * 10^{-7} N/A^2[/tex]

When the current in the wire are of the same direction  the force is positive and when they are in opposite direction the force is negative

   Considering force between A and C

          [tex]F_{A -C} = \frac{\mu_o }{2 \pi} \cdot \frac{I_a I_c }{2R} * L[/tex]

   Considering force between B and C    

        [tex]F_{B -C} = \frac{\mu_o }{2 \pi} \cdot \frac{I_b I_c }{R} * L[/tex]

The resultant force is

        [tex]F_R = F_{B -C} - F_{A -C} = \frac{\mu_o }{2 \pi} \cdot \frac{I_a I_c }{2R} * L - \frac{\mu_o }{2 \pi} \cdot \frac{I_b I_c }{R} * L[/tex]

         [tex]F_R} = \frac{\mu_o }{2 \pi} \cdot \frac{I * I }{R} * L * ({1 - \frac{1}{2} })[/tex]

Substituting values

       [tex]F_R} = \frac{4 \pi * 10^{-7}}{2 * 3.142} \cdot \frac{ 20*20 }{0.015} * 2 ({\frac{1}{2} })[/tex]

       [tex]F_R} = 5.33 *10^{-3} N[/tex]

       [tex]F_R} = 5.33 \ m N[/tex]

Ver imagen okpalawalter8