Answer:
[tex]\mu_{\hat p} = 0.25[/tex]
[tex]\sigma_{\hat p}= \sqrt{\frac{0.25*(1-0.25)}{40}}= 0.0685[/tex]
[tex] z = \frac{0.2-0.25}{0.0685}= -0.730[/tex]
And we can use the normal standard distribution or excel to find this probability and we got:
[tex] P(\hat p <0.2) = P(z<-0.730)= 0.233[/tex]
Step-by-step explanation:
We define the parameter as the proportion of students at a college who study abroad and this value is known [tex]p =0.25[/tex], we select a sample size of n =40 and we are interested in the probability associated to the sample proportion, but we know that the distirbution for the sample proportion is given by:
[tex]\hat p \sim N(p , \sqrt{\frac{p(1-p)}{n}}[/tex]
And the paramters for this case are:
[tex]\mu_{\hat p} = 0.25[/tex]
[tex]\sigma_{\hat p}= \sqrt{\frac{0.25*(1-0.25)}{40}}= 0.0685[/tex]
We want to find the following probability:
[tex]P(\hat p< 0.2)[/tex]
For this case since we know the distribution for the sample proportion we can use the z score formula given by:
[tex] z = \frac{\hat p -\mu_{\hat p}}{\sigma_{\hat p}}[/tex]
Replacing the info given we got:
[tex] z = \frac{0.2-0.25}{0.0685}= -0.730[/tex]
And we can use the normal standard distribution or excel to find this probability and we got:
[tex] P(\hat p <0.2) = P(z<-0.730)= 0.233[/tex]