Respuesta :
What is [tex]z[/tex] score?
The [tex]$z$[/tex] score is used to determine by how many standard deviations the raw score is above or below the mean. It is given by:
[tex]$z=\frac{\left( \text{Raw score }-\text{ Mean} \right)}{\text{Standard deviation}}$[/tex]
How to determine the [tex]z[/tex] score?
Given that:
Mean of 26 and a standard deviation of 4, For:
[tex]x=28[/tex]
[tex]=\frac{(28-26)}{4}\\ =\frac{2}{4}\\ =\frac{1}{2}\\ =0.5[/tex]
For [tex]x=35[/tex]
[tex]=\frac{(35-26)}{4}\\ =\frac{9}{4}\\ =2.25[/tex]
Now, compare the values.
[tex]$P(0.5 < z < 2.25)$[/tex]
[tex]$P(z < 2.25)-P(z < 0.5)$[/tex]
Learn more about [tex]z[/tex] score at- https://brainly.com/question/16206519
#SPJ2