Answer:
Therefore, the correct options are;
-P(fatigue) = 0.44
[tex]P(fatigue \left | \right drug)[/tex] = 0.533
--P(drug and fatigue) = 0.32
P(drug)·P(fatigue) = 0.264
Step-by-step explanation:
Here we have that for dependent events,
[tex]P(A \, and \, B)= P(A)\times P(B\left | \right A )[/tex]
From the options, we have;
[tex]P(fatigue \left | \right drug)[/tex] = 0.533
P(drug) = 0.6
P(drug and fatigue) = 0.32
Therefore
P(drug and fatigue) = P(drug)×[tex]P(fatigue \left | \right drug)[/tex]
= 0.6 × 0.533 = 0.3198 ≈ 0.32 = P(drug and fatigue)
Therefore, the correct options are;
-P(fatigue) = 0.44
[tex]P(fatigue \left | \right drug)[/tex] = 0.533
--P(drug and fatigue) = 0.32
P(drug)·P(fatigue) = 0.264
Since P(fatigue) = 0.44 ∴ P(drug) = 0.264/0.44 = 0.6.