Respuesta :

4x-10x = 36
-6x = 36
X= -6

Answer:

x = ± 3, x = ± 2i

Step-by-step explanation:

Given

[tex]x^{4}[/tex] - 5x² - 36 = 0

Use the substitution u = x² then the equation is

u² - 5u - 36 = 0 ← in standard form

(u - 9)(u + 4) = 0 ← in factored form

Equate each factor to zero and solve for u

u - 9 = 0 ⇒ u = 9

u + 4 = 0 ⇒ u = - 4

This indicates there will be 2 real roots and 2 complex roots

Change back to find values of x, that is

u = 9 ⇒ x² = 9 ⇒ x = ± [tex]\sqrt{9}[/tex] = ± 3 ← real roots

u = - 4 ⇒ x² = - 4 ⇒ x = ± [tex]\sqrt{-4}[/tex] = ± 2i ← imaginary roots