Respuesta :
Answer:
[tex]y = (x+4)^{2}+6[/tex]
Step-by-step explanation:
The parabola with vertex at point (h,k) is described by the following model:
[tex]y - k = C\cdot (x-h)^{2}[/tex]
The equation which satisfies the conditions described above:
[tex]y - 6 = (x+4)^{2}[/tex]
[tex]y = (x+4)^{2}+6[/tex]
The two points are evaluated herein:
x = -6
[tex]y =(-6+4)^{2}+6[/tex]
[tex]y = (-2)^{2}+6[/tex]
[tex]y = 4 + 6[/tex]
[tex]y = 10[/tex]
x = -2
[tex]y = (-2+4)^{2}+6[/tex]
[tex]y = 2^{2} + 6[/tex]
[tex]y = 4 + 6[/tex]
[tex]y = 10[/tex]
The equation of the translated function is [tex]y = (x+4)^{2}+6[/tex].