Complete question:
What are the x- and y- coordinates of point E, which partitions the directed line segment from [tex]A\:(- 4,\:9) \:to\: B\:(2,\:- 3)[/tex] into a ratio of 1 : 2.
Answer:
(C) (-2,5)
Step-by-step explanation:
[tex]x = (\dfrac{m}{m+n}) (x_2-x_1) + x_1\\\\y = (\dfrac{m}{m+n}) (y_2-y_1) + y_1[/tex]
[tex](x_1,y_1)=(- 4,\:9),(x_2,y_2)=B\:(2,\:- 3)[/tex]
m=1, n=2
[tex]x = \left(\dfrac{1}{1+2}\right) (2-(-4)) + (-4)\\=\left(\dfrac{1}{3}\right) (2+4)-4\\=\left(\dfrac{6}{3}\right)-4=2-4\\x=-2[/tex]
[tex]y = \left(\dfrac{1}{1+2}\right) (-3-9) + 9\\=\left(\dfrac{1}{3}\right) (-12)+9\\=\left(-\dfrac{12}{3}\right)+9=-4+9\\y=5[/tex]
The x- and y-coordinates of the point E is (-2,5)