Answer:
(See explanation for further details)
Step-by-step explanation:
A. [tex]x^{3} + 3\cdot x^{2} - 2\cdot x + 7[/tex] : V. Four terms.
B. [tex]3\cdot a \cdot b^{6}[/tex] : I . 9th Degree Monomial (Instead, 7th Degree Monomial)
C. [tex]3\cdot x^{4} - 9 \cdot x^{3} + 5\cdot x^{8}[/tex] : VII - Equivalent to [tex]5\cdot x^{8} + 3\cdot x^{4} - 9 \cdot x^{3}[/tex]
D. [tex]7\cdot a^{3}\cdot b^{2} + 18\cdot a \cdot b^{2}\cdot c - 9\cdot a^{3}[/tex] : III - 7th degree polynomial.
E. [tex]2\cdot x^{5} - 9\cdot x^{3} + 8\cdot x[/tex] : VI - 5th degree polynomial.
F. [tex]4\cdot x^{8} - 7\cdot x^{2} + 9[/tex] : IV - Leading coefficient of 4.
G. [tex]x^{2} - 7[/tex] : II - Constant term of -7.