Respuesta :

Answer:

[tex]36+15+15+15+15[/tex]

Step-by-step explanation:

For the surface area we need to add up all the areas in the pyramid:

  • area of the base
  • area of the triangle sides (there are 4 triangles)

Area of the base:

the base is a square, and the area of a square is given by:

[tex]a_{base}=l^2[/tex]

where [tex]l[/tex] is the length of the side: [tex]l=6[/tex], thus:

[tex]a_{base}=(6)^2\\a_{base}=36[/tex]

Area of the triangles:

one triangle has the area given by the formula:

[tex]a_{triangle}=\frac{b*h}{2}[/tex]

where [tex]b[/tex] is the base of the triangle: [tex]b=6[/tex]

and [tex]h[/tex] is the height of the triangle: [tex]h=5[/tex], thus we have the following:

[tex]a_{triangle}=\frac{6*5}{2} \\\\a_{triangle}=\frac{30}{2} \\\\a_{triangle}=15[/tex]

the expression that represents the surface area of the pyramid is:

[tex]a_{base}+area_{triangle}+area_{triangle}+area_{triangle}+area_{triangle}[/tex]

substituting our values:

[tex]36+15+15+15+15[/tex]

which is option B

Answer:

Its Option C

Step-by-step explanation: