IM TAKING AN EXAM AND I NEED SO MUCH HELP!!

Show how to find the inverse of f(x) = x^3 - 5. Calculate 3 points on f(x) and use these points to show that the inverse is correct.

Respuesta :

Answer:

[tex]f^{-1}(x) = \sqrt[3]{x+5}[/tex]

Step-by-step explanation:

A function [tex]f^{-1}[/tex] is the inverse of f if whenever y =f(x) and [tex]x =f^{-1}[/tex]

To find the  inverse of f(x) = [tex]x^{3}[/tex] - 5, we use the following steps:

  • Step 1 : Put y for f(x) and solve for x

y = [tex]x^{3}[/tex] - 5

<=> [tex]x^{3}[/tex]  = y + 5

<=> x = [tex]\sqrt[3]{y+ 5}[/tex]

  • Step 2: Put [tex]f^{-1}(y)[/tex] for x, we have:

[tex]f^{-1}(y) =\sqrt[3]{y+5}[/tex]

  • Step 3: Interchange y =x, we have

[tex]f^{-1}(x) = \sqrt[3]{x+5}[/tex]

Let Calculate 3 points on f(x)

x = 0 => y = -5

x = 1  => y = -4

x = 2 => y = 3

Let Calculate 3 points on [tex]f^{-1}[/tex] (x)

x = -5 => y = 0

x = -4  => y = 1

x = 3 => y = 2

Yes, the inverse is correct because:

  • the domain of the inverse function is the range of the original function
  • the range of the inverse function is the domain of the original function