Answer:
b) The margin of error is approximately 3.24
e) The critical value is 1.7921.
Step-by-step explanation:
Step(i):-
Given sample size 'n' =20
Given sample standard deviation 's' = 10
Margin of error
The margin of error is determined by
[tex]M.E = \frac{t_{\alpha } S.D }{\sqrt{n} }[/tex]
The level of significance ∝ =0.95
The degrees of freedom = n-1 = 20-1=19
t₀.₉₅ = 1.729
[tex]M.E = \frac{1.729 X10 }{\sqrt{20} }[/tex]
Margin of error = 3.866
Step(ii):-
Margin of error
The margin of error is determined by
[tex]M.E = \frac{t_{\alpha } S.D }{\sqrt{n} }[/tex]
Given another sample size n =30
The level of significance ∝ =0.95
The degrees of freedom = n-1 = 30-1=29
t₀.₉₅ = 1.70
[tex]M.E = \frac{1.7021 X10 }{\sqrt{30} } =3.24[/tex]
Margin of error = 3.24