(a) What is the total volume (in L) of gaseous products, measured at 350°C and 735 torr, when an automobile engine burns 100. g of C8H18 (a typical component of gasoline)? Page 253 (b) For part (a), the source of O2 is air, which is 78% N2, 21% O2, and 1.0% Ar by volume. Assuming all the O2 reacts, but no N2 or Ar does, what is the total volume (in L) of the engine’s gaseous exhaust?

Respuesta :

Answer:

Part A

 The volume of the gaseous product  is  [tex]V = 787L[/tex]

Part B

The volume of the the engine’s gaseous exhaust is  [tex]V_e = 2178 \ L[/tex]

Explanation:

Part A

From the question we are told that

    The temperature is  [tex]T = 350^oC = 350 +273 =623K[/tex]

     The pressure is  [tex]P = 735 \ torr = \frac{735}{760} = 0.967\ atm[/tex]

     The of  [tex]C_8 H_{18} = 100.0g[/tex]

The chemical equation for this combustion is

               [tex]2 C_8 H_{18}_{(l)} + 25O_2_{(l)} ----> 16CO_2_{(g)} + 18 H_2 O_{(g)}[/tex]

 The number of moles of  [tex]C_8 H_{18}[/tex] that reacted is mathematically represented as

               [tex]n = \frac{mass \ of \ C_8H_{18} }{Molar \ mass \ of C_8H_{18} }[/tex]

The molar mass of  [tex]C_8 H_{18}[/tex] is constant value which is

                  [tex]M = 114.23 \ g/mole[/tex]  

So          [tex]n = \frac{100 }{114.23} }[/tex]

             [tex]n = 0.8754 \ moles[/tex]

The gaseous product in the reaction is [tex]CO_2_{(g)}[/tex] and water vapour

Now from the reaction

    2 moles of [tex]C_8 H_{18}[/tex]  will react with 25 moles of [tex]O_2[/tex] to give (16 + 18) moles of [tex]CO_2_{(g)}[/tex] and  [tex]H_2 O_{(g)}[/tex]

So

    1 mole of [tex]C_8 H_{18}[/tex] will  react with 12.5 moles of  [tex]O_2[/tex] to give 17 moles of [tex]CO_2_{(g)}[/tex] and  [tex]H_2 O_{(g)}[/tex]

This implies that

    0.8754 moles of [tex]C_8 H_{18}[/tex] will react with (12.5 * 0.8754 ) moles of [tex]O_2[/tex] to give  (17 * 0.8754) of [tex]CO_2_{(g)}[/tex] and  [tex]H_2 O_{(g)}[/tex]

So the no of moles of gaseous product is

         [tex]N_g = 17 * 0.8754[/tex]

         [tex]N_g = 14.88 \ moles[/tex]

From the ideal gas law

       [tex]PV = N_gRT[/tex]

making V the subject

        [tex]V = \frac{N_gRT}{P}[/tex]

Where R is the gas constant with a value [tex]R = 0.08206 \ L\cdot atm /K \cdot mole[/tex]

Substituting values

          [tex]V = \frac{14.88* 0.08206 *623}{0.967}[/tex]

          [tex]V = 787L[/tex]

Part B

From the reaction the number of moles of oxygen that reacted is

         [tex]N_o = 0.8754 * 12.5[/tex]

         [tex]N_o = 10.94 \ moles[/tex]

The volume is

      [tex]V_o = \frac{10.94 * 0.08206 *623}{0.967}[/tex]

      [tex]V_o = 579 \ L[/tex]

No this volume is the 21% oxygen that reacted the 79% of air that did not react are the engine gaseous exhaust and this can be mathematically evaluated as

         [tex]V_e = V_o * \frac{0.79}{0.21}[/tex]

Substituting values

       [tex]V_e = 579 * \frac{0.79}{0.21}[/tex]

       [tex]V_e = 2178 \ L[/tex]