The complete combustion of methane is: CH4 + 2O2 ! 2H2O + CO2 a. Calculate the standard Gibbs free energy change for the reaction at 298 K (i.e. ). b. Calculate the energetic (ΔH) and entropic contributions (TΔS) to the favorable standard Gibbs free energy change at 298 K and determine which is the dominant contribution,? c. Estimate the equilibrium constant at 298 K.

Respuesta :

Answer:

a

The  standard Gibbs free energy change for the reaction at 298 K is

               [tex]\Delta G^o_{re} = -800.99 kJ/moles[/tex]

b

  The  energetic (ΔH)  is  [tex]\Delta H^o _{re} = -802.112 \ kJ/mole[/tex]

    The  entropic contributions  is  [tex]T \Delta S = -1.126 \ kJ/mole[/tex]

Energetic is the dominant contribution

c

  The equilibrium constant at 298 K  is  [tex]K = 2.53[/tex]

Explanation:

From the question we are told that

    The chemical reaction is  

              [tex]CH_4 + 2 O_2 ----> 2 H_2 O + CO_2[/tex]

Generally ,

The free energy of formation of  [tex]CH_4[/tex]  is a constant with a value  

          [tex]\Delta G^o_f __{CH_4}} = -50.794 \ kJ / moles[/tex]

The free energy of formation of  [tex]O_2[/tex]  is a constant with a value  

        [tex]\Delta G^o_f __{O_2}} = 0 \ kJ / moles[/tex]

The free energy of formation of  [tex]H_2O[/tex]  is a constant with a value  

            [tex]\Delta G^o_f __{H_2O}} = -228.59 \ kJ / moles[/tex]

The free energy of formation of  [tex]CO_2[/tex]  is a constant with a value  

            [tex]\Delta G^o_f __{H_2O}} = -394.6 \ kJ / moles[/tex]

The Enthalpy  of  formation of  [tex]CH_4[/tex] at standard condition i  is a constant with a value  

             [tex]\Delta H^o_f __{CH_4}} = -74.848 \ kJ / moles[/tex]

The Enthalpy  of   formation of  [tex]CO_2[/tex] at standard condition is a constant with a value  

              [tex]\Delta H^o_f __{CO_2}} = -393.3 \ kJ / moles[/tex]

The Enthalpy  of  formation of [tex]O_2[/tex] at standard condition is a constant with a value  

              [tex]\Delta H^o_f __{O_2}} = 0 \ kJ / moles[/tex]

The Enthalpy  of   formation  of  [tex]H_2O[/tex] at standard condition is a constant with a value  

              [tex]\Delta H^o_f __{H_2O}} = -241.83 \ kJ / moles[/tex]

The standard Gibbs free energy change for the reaction at 298 K is mathematically represented as

      [tex]\Delta G^o_{re} = (\Delta G^o_f __{H_2O}} + (2 * \Delta G^o_f __{H_2O}} )) - ((\Delta G^o_f __{CH_4}} + (2 * \Delta G^o_f __{O_2}}))[/tex]

Substituting values

 [tex]\Delta G^o_{re} =\Delta G= ( (-394.6 ) + (2 * (-228.59)) ) - ((-50.794) +(2* 0))[/tex]

 [tex]\Delta G^o_{re} = -800.99 kJ/moles[/tex]

The Enthalpy  of   formation  of the reaction is

[tex]\Delta H^o _{re} =( \Delta H^o_f __{CH_4}} + (2 * (\Delta H^o_f __{H_2O}} ))) - ( \Delta H^o_f __{CH_4}} + (2 * \Delta H^o_f __{O_2}}))[/tex]

Substituting values

  [tex]\Delta H^o _{re} = \Delta H = ((-393.3) + 2 * ( -241.83)) - ( -74.848 + (2 * 0))[/tex]

 [tex]\Delta H^o _{re} = -802.112 \ kJ/mole[/tex]

 The entropic contributions is mathematically represented as

    [tex]T \Delta S = \Delta H -\Delta G[/tex]

 Substituting values

     [tex]T \Delta S =-802 .112-(-800.986)[/tex]

    [tex]T \Delta S = -1.126 \ kJ/mole[/tex]

Comparing the values of  [tex]T \Delta S \ and \ \Delta G[/tex] we see that  energetic is the dominant contribution

The standard Gibbs free energy change for the reaction at 298 K can also be represented mathematically  as

         [tex]\Delta G = -RT lnK[/tex]

Where  R  is the gas constant with as value of  [tex]R = 8.314 *10^{-3} kJ/mole[/tex]

   K is the equilibrium constant

   T is the temperature with a given value  of [tex]T = 298K[/tex]

Making K the subject we have

      [tex]K = e ^{- \frac{\Delta G }{RT} }[/tex]

Substituting values  

      [tex]K = e ^{- \frac{-800.99 }{(8.314 *10^{-3} ) * (298)} }[/tex]

       [tex]K = 2.53[/tex]