Respuesta :
Answer:
1) b1=5.831
2) b0=12.510
3) y(34)=210.764
4) y(0)=12.510
5) y=12.510+5.831x
6) R^2=0.85
Step-by-step explanation:
We have the linear regression model [tex]y=b_0+b_1 x[/tex].
We start by calculating the all the parameters needed to define the model:
- Mean of x:
[tex]\bar x=\dfrac{1}{5}\sum_{i=1}^{5}(2+3+4+5+7)=\dfrac{21}{5}=4.2[/tex]
- Uncorrected standard deviation of x:
[tex]s_x=\sqrt{\dfrac{1}{n}\sum_{i=1}^{5}(x_i-\bar x)^2}\\\\\\s_x=\sqrt{\dfrac{1}{5}\cdot [(2-4.2)^2+(3-4.2)^2+(4-4.2)^2+(5-4.2)^2+(7-4.2)^2]}\\\\\\ s_x=\sqrt{\dfrac{1}{5}\cdot [(4.84)+(1.44)+(0.04)+(0.64)+(7.84)]}\\\\\\ s_x=\sqrt{\dfrac{14.8}{5}}=\sqrt{2.96}\\\\\\s_x=1.72[/tex]
- Mean of y:
[tex]\bar y=\dfrac{1}{5}\sum_{i=1}^{5}(25+33+34+45+48)=\dfrac{185}{5}=37[/tex]
- Standard deviation of y:
[tex]s_y=\sqrt{\dfrac{1}{n}\sum_{i=1}^{5}(y_i-\bar y)^2}\\\\\\s_y=\sqrt{\dfrac{1}{5}\cdot [(25-37)^2+(33-37)^2+(34-37)^2+(45-37)^2+(48-37)^2]}\\\\\\ s_y=\sqrt{\dfrac{1}{5}\cdot [(144)+(16)+(9)+(64)+(121)]}\\\\\\ s_y=\sqrt{\dfrac{354}{5}}=\sqrt{70.8}\\\\\\s_y=8.414[/tex]
- Sample correlation coefficient
[tex]r_{xy}=\sum_{i=1}^5\dfrac{(x_i-\bar x)(y_i-\bar y)}{(n-1)s_xs_y}\\\\\\r_{xy}=\dfrac{(2-4.2)(25-37)+(3-4.2)(33-37)+...+(7-4.2)(48-37)}{4\cdot 1.72\cdot 8.414}\\\\\\r_{xy}=\dfrac{69}{57.888}=1.192[/tex]
Step 1
The slope b1 can be calculated as:
[tex]b_1=r_{xy}\dfrac{s_y}{s_x}=1.192\cdot\dfrac{8.414}{1.72}=5.831[/tex]
Step 2
The y-intercept b0 can now be calculated as:
[tex]b_o=\bar y-b_1\bar x=37-5.831\cdot 4.2=37-24.490=12.510[/tex]
Step 3
The estimated value of y when x=34 is:
[tex]y(34)=12.510+5.831\cdot(34)=12.510+198.254=210.764[/tex]
Step 4
At x=0, the estimated y takes the value of the y-intercept, by definition.
[tex]y(0)=12.510+5.831\cdot(0)=12.510+0=12.510[/tex]
Step 5
The linear model becomes
[tex]y=12.510+5.831x[/tex]
Step 6
The coefficient of determination can be calculated as:
[tex]R^2=1-\dfrac{SS_{res}}{SS_{tot}}=1-\dfrac{\sum(y_i-f_i)}{ns_y^2}\\\\\\\sum(y_i-f_i)=(25-24.17)^2+(33-30)^2+(34-35.83)^2+(45-41.67)^2+(48-53.33)^2\\\\\sum(y_i-f_i)=0.69+ 8.98+ 3.36+ 11.12+ 28.38=52.53\\\\\\ ns_y^2=5\cdot 8.414^2=353.98\\\\\\R^2=1-\dfrac{52.53}{353.98}=1-0.15=0.85[/tex]