A cylindrical bar of metal having a diameter of 21.0 mm and a length of 210 mm is deformed elastically in tension with a force of 46800 N. Given that the elastic modulus and Poisson's ratio of the metal are 60.9 GPa and 0.34, respectively, determine the following: (a) The amount by which this specimen will elongate in the direction of the applied stress. (b) The change in diameter of the specimen. Indicate an increase in diameter with a positive number and a decrease with a negative number. (a) 0.443 mm (b) mm

Respuesta :

Answer:

The the elongated length is [tex]\Delta L = 0.4 \ mm[/tex]

The change in diameter is  [tex]\Delta d = - 0.0136\ mm[/tex]

Explanation:

From the question we are told that

   The diameter of  the cylindrical bar is [tex]d = 21.0 \ mm = \frac{21}{1000} = 0.021 \ m[/tex]

     The length of the cylindrical bar is  [tex]L= 210 \ mm = 0.21 \ m[/tex]

      The force that deformed it is [tex]F = 46800 \ N[/tex]

       Elastic modulus is  [tex]E = 60.9 \ GPa = 60.9 *10^{9}Pa[/tex]

       The Poisson's ratio is  [tex]\mu = 0.34[/tex]

Generally elastic modulus is mathematically represented as

             [tex]E = \frac{\sigma }{\epsilon}[/tex]

Where

[tex]\epsilon[/tex] is the strain which is mathematically represented  as

            [tex]\epsilon = \frac{L}{\Delta L}[/tex]

Where [tex]\Delta L[/tex] is the elongation length

[tex]\sigma[/tex] is the stress on the cylinder which is mathematically represented as

            [tex]\sigma = \frac{F}{A}[/tex]

Where F is the force and

 A is the area which is calculated as

               [tex]A = \frac{\pi} {4} d^2[/tex]

Substituting values

               [tex]A = \frac{\pi}{4} * (0.021)[/tex]

              [tex]A = 0.000346 \ m^2[/tex]

So the stress is

         [tex]\sigma = \frac{46800}{0.000346}[/tex]

        [tex]\sigma = 1.35 *10^{8} \ N \cdot m^2[/tex]

Thus the elastic modulus is  

        [tex]E = \frac{1.35 *10 ^{8}}{\frac{\Delta L}{L} }[/tex]

making [tex]\Delta L[/tex] the subject

       [tex]\Delta L = \frac{EL}{1.35 *10^{8}}[/tex]

Substituting values

      [tex]\Delta L = \frac{1.35 *10^{8} * 0.21}{1.35 *10^{8}}[/tex]

      [tex]\Delta L = \frac{1.35 *10^{8} * 0.21}{60.9*10^{9}}[/tex]        

       [tex]\Delta L = 0.0004 \ m[/tex]

      Converting to mm

   [tex]\Delta L = 0.0004 * 1000[/tex]    

  [tex]\Delta L = 0.4 \ mm[/tex]    

Generally the poisson ratio is mathematically represented as

        [tex]\mu = - \frac{\frac{\Delta d }{d} }{\frac{\Delta L }{L} }[/tex]

The negative sign indicate a decrease in diameter as a result of the force

making [tex]\Delta d[/tex] the subject

        [tex]\Delta d = - \mu * \frac{\Delta L }{L } * d[/tex]

Substituting values

        [tex]\Delta d = - 0.34 * \frac{0.0004 }{0.210 } * 0.021[/tex]

       [tex]\Delta d = - 1.36 *10^{-5} \ m[/tex]

      Converting to mm      

 [tex]\Delta d = - 0.0136\ mm[/tex]