Respuesta :

Answer:

P(x) = [tex]x^{4}[/tex] - 7x² + 12

Step-by-step explanation:

Given zeros x = 2, x = - 2, x = [tex]\sqrt{3}[/tex], x = - [tex]\sqrt{3}[/tex]

Then the factors are (x - 2), (x + 2), (x - [tex]\sqrt{3}[/tex] ), (x + [tex]\sqrt{3}[/tex] )

and the polynomial is the product of the factors, that is

P(x) = (x - 2)(x + 2)(x - [tex]\sqrt{3}[/tex] )(x + [tex]\sqrt{3}[/tex] ) ← expand in pairs using FOIL

      = (x² - 4)(x² - 3) ← distribute

     = [tex]x^{4}[/tex] - 3x² - 4x² + 12 ← collect like terms

    = [tex]x^{4}[/tex] - 7x² + 12