An eighteen gauge copper wire has a nominal diameter of 1.02mm. This wire carries a constant current of 1.67A to a 200w lamp. The density of free electrons is 8.5 x 1028 electrons per cubic metre. Find the magnitude of:
i. The current density ii. The drift velocity

Respuesta :

Answer:

The current density is  [tex]J = 2.04 * 10^{6} A /m^2[/tex]

The drift velocity is  [tex]v_d = 1.5 * 10^{-4} m/s[/tex]

Explanation:

From the question we are told that

  The nominal diameter of the wire is [tex]d = 1.02 mm= \frac{1.02}{1000} = 0.00102 \ m[/tex]

   The current carried by the wire is [tex]I = 1.67 A[/tex]

    The power rating of the lamp is [tex]P = 200 W[/tex]

    The density of electron is [tex]n = 8.5 * 10^{28} \ e/m^3[/tex]

   

The current density is mathematically represented as

       [tex]J = \frac{I}{A}[/tex]

Where A is the area which is mathematically evaluated as

          [tex]A = \pi \frac{d^2}{4}[/tex]

Substituting values

         [tex]A = 3.142 * \frac{(1.02 * 10^{-3})^2 }{4}[/tex]

       [tex]A = 8.0*10^{-4}m^2[/tex]

So

         [tex]J = \frac{1.67}{8.0*10^{-4}}[/tex]

       [tex]J = 2.04 * 10^{6} A /m^2[/tex]

The drift velocity is mathematically represented as

       [tex]v_d = \frac{J}{ne}[/tex]

Where e is the charge on one electron which has a value  [tex]e = 1.602 *10^{-19} C[/tex]

So

         [tex]v_d =\frac{2.04 * 10^6 }{8.5 *10^{28} * 1.6 * 10^{-19}}[/tex]

        [tex]v_d = 1.5 * 10^{-4} m/s[/tex]