Answer:
The maximum amount of work is [tex]W = 1563.289 \ J[/tex]
Explanation:
From the question we are told that
The temperature of the environment is [tex]T = 280\ K[/tex]
The volume of container A is [tex]V_A = 2 m^3[/tex]
Initially the number of moles is [tex]n = 1.2 \ moles[/tex]
The volume of container B is [tex]V_B = 3.5 \ m^3[/tex]
At equilibrium of the gas the maximum work that can be done on the turbine is mathematically represented as
[tex]W = P_A V_A ln[ \frac{V_B}{V_A} ][/tex]
Now from the Ideal gas law
[tex]P_A V_A = nRT[/tex]
So substituting for [tex]P_A V_A[/tex] in the equation above
[tex]W = nRT ln [\frac{V_B}{V_A} ][/tex]
Where R is the gas constant with a values of [tex]R = 8.314 \ J/mol[/tex]
Substituting values we have that
[tex]W = 1.2 * (8.314) * (280) * ln [\frac{3.5}{2} ][/tex]
[tex]W = 1563.289 \ J[/tex]