Answer:
The answer is
[tex]f(x) = {\displaystyle 8 + \frac{-28}{1}(x+2)+\frac{-36}{2!}(x+2)^2 + \frac{-18}{3!}(x+2)^2 }[/tex]
Step-by-step explanation:
Remember that Taylor says that
[tex]f(x) = {\displaystyle \sum\limits_{k=0}^{\infty} \frac{f^{(k)}(a) }{k!}(x-a)^k }[/tex]
For this case
[tex]f^{(0)} (-2) = 8(-2)-3(-2)^3 = 8\\f^{(1)} (-2) = 8-3(3)(-2)^2 = -28\\f^{(2)} (-2) = -3(3)2(-2) = -36\\f^{(2)} (-2) = -3(3)2 = -18[/tex]
[tex]f(x) = {\displaystyle 8 + \frac{-28}{1}(x+2)+\frac{-36}{2!}(x+2)^2 + \frac{-18}{3!}(x+2)^2 }[/tex]