Respuesta :
Answer:
[tex]\displaystyle A = \int\limits^{33}_{5} {\frac{1}{x}} \, dx[/tex]
[tex]\displaystyle A = \ln \frac{33}{5}[/tex]
General Formulas and Concepts:
Algebra II
- Logarithmic Properties
Calculus
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Area of a Region Formula: [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = \frac{1}{x}[/tex]
Bounds: [5, 33]
Step 2: Find Area
- Substitute in variables [Area of a Region Formula]: [tex]\displaystyle A = \int\limits^{33}_{5} {\frac{1}{x}} \, dx[/tex]
- [Integral] Integrate [Logarithmic Integration]: [tex]\displaystyle A = \ln |x| \bigg| \limits^{33}_5[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle A = \ln |33| - \ln |5|[/tex]
- Condense: [tex]\displaystyle A = \ln \frac{33}{5}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration