A helicopter, which starts directly above you, lands at a point that is 4.50 km from your present location and in a direction that is 25° north of east. You want to meet the helicopter at it's landing site, however, you must travel along streets that are oriented either east-west or north-south. What is the minimum distance you must travel to reach the helicopter?

Respuesta :

Answer:

5.98 km

Explanation:

This question can be easily solved by using the trigonometric properties of a right angled triangle.

See attachment for pictorial explanation

To get x we have

Sinθ = opp / hyp

Sin25 = x / 4.5

x = 4.5 sin 25

x = 4.5 * 0.423

x = 1.9 km

To get y, we have

Cosθ = adj / hyp

Cos25 = y / 4.5

y = 4.5 cos 25

y = 4.5 * 0.906

y = 4.08 km

x + y = 1.9 + 4.09 = 5.98 km

Thus, the minimum distance required is 5.98 km

Ver imagen barackodam