Answer:
The point estimate is 0.45.
The 95% error margin is 0.042 = 4.2 percentage points.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is given by:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
Point estimate
We have that [tex]n = 540, x = 243[/tex]
So the point estimate is:
[tex]\pi = \frac{243}{540} = 0.45[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
Error margin:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]M = 1.96\sqrt{\frac{0.45*0.55}{540}}[/tex]
[tex]M = 0.0420[/tex]
The 95% error margin is 0.042 = 4.2 percentage points.