Sketch the region of integration and evaluate the following integral. ModifyingBelow Integral from nothing to nothing Integral from nothing to nothing With Upper R StartFraction 1 Over 3 plus StartRoot x squared plus y squared EndRoot EndFraction dA ​, RequalsStartSet (r comma theta ): 0 less than or equals r less than or equals 2 comma StartFraction pi Over 2 EndFraction less than or equals theta less than or equals StartFraction 3 pi Over 2 EndFraction EndSet

Respuesta :

Answer:

[tex]\frac{10\pi}{3}[/tex]

Step-by-step explanation:

According to the information of the problem we have to compute the following integral.

[tex]{\displaystyle \int\limits \int} \frac{1}{3} + \sqrt{x^2 + y^2} \, dA[/tex]

Where the region of integration is

[tex]R = \Big\{ (r,\theta) : 0 \leq r \leq 2 , \,\,\,\, \frac{\pi}{2} \leq \theta \leq \frac{3\pi}{2} \Big\}[/tex]

If you plot, that is just a circle between [tex]\pi/2[/tex]  and  [tex]3\pi/2[/tex], which is just half of the circle on the negative part of the plane.

When you switch coordinates

[tex]{\displaystyle \int\limits \int} \frac{1}{3} + \sqrt{x^2 + y^2} \, dA = {\displaystyle \int\limits_{0}^{2} \int\limits_{\pi/2}^{3\pi/2}} \bigg(\frac{1}{3} + r \bigg)r \, d\theta\, dr = \frac{10\pi}{3}[/tex]