A string is 1.6 m long. One side of the string is attached to a force sensor and the other side is attached to a ball with a mass of 200 g. The ball is lifted to a height of 1.5 m above the ground and then released from rest. The ball swings to its lowest point where the string breaks. The ball is then in free-fall until it hits the ground. How far would the ball travel in the horizontal direction between points B and C (i.e. what is the range)?

Respuesta :

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The distance traveled in horizontal direction is [tex]D = 1.38 m[/tex]

Explanation:

From the question we are told that

      The length of the string is  [tex]L = 1.6 \ m[/tex]

      The mass of the ball is  [tex]m = 200 g = \frac{200}{1000} = 0.2 \ kg[/tex]

       The height of ball is  [tex]h = 1.5 \ m[/tex]

Generally the work energy theorem can be mathematically represented as

               [tex]PE = KE[/tex]

   Where PE is the loss in potential energy which is mathematically represented as

                   [tex]PE =mgh[/tex]

Where h is the difference height of ball at A and at B  which is mathematically represented as

                 [tex]h = y_A - y_B[/tex]

So        [tex]PE =mg(y_A - y_B)[/tex]              

While KE is the gain in kinetic energy which is mathematically represented as

               [tex]KE = \frac{1}{2 } (v_b ^2 - 0)[/tex]

Where [tex]v_b[/tex] is the velocity of the of the ball

  Therefore we have from above that

                    [tex]PE =KE \equiv mg (y_A - y_B) = \frac{1}{2} m (v_b ^2 - 0)[/tex]

               Making [tex]v_b[/tex] the  subject we have

      [tex]v_b = \sqrt{2g (y_A - y_B)}[/tex]

substituting values

      [tex]v_b = \sqrt{2g (1.5 - 0.40)}[/tex]

     [tex]v_b = 4.6 \ m/s[/tex]

Considering velocity of the ball when it hits the  floor in terms of its vertical and horizontal component we have

         [tex]v_x = 4.6 m/s \ while \ v_y = 0 m/s[/tex]

The time taken to travel  vertically from the point the ball broke loose  can be obtained using the equation of motion

            [tex]s = v_y t - \frac{1}{2} g t^2[/tex]

Where s is distance traveled vertically which given in the diagram as [tex]s = -0.4[/tex]

The negative sign is because it is moving downward

     Substituting values

              [tex]-0.4 = 0 -\frac{1}{2} * 9.8 * t^2[/tex]

         solving for t we have  

               [tex]t = 0.3 \ sec[/tex]

Now the distance traveled on the horizontal is mathematically evaluated as

           [tex]D = v_b * t[/tex]

           [tex]D = 4.6 * 0.3[/tex]

           [tex]D = 1.38 m[/tex]

Ver imagen okpalawalter8

Answer:

bjknbjk;jln

Explanation: