Associations In Data:Question 10
The list below show test scores for 3rd period on a
recent test. Finding the mean absolute deviation.
62 63 68 72 79 80 83 93 94 95
Select one:
7.8
101.2
78.9
10.12

Respuesta :

Answer:

[tex] \bar X = \frac{62+63+68+72+79+80+83+93+94+95}{10}= 78.9[/tex]

[tex] |62-78.9| = 16.9[/tex]

[tex] |63-78.9| = 15.9[/tex]

[tex] |68-78.9| = 10.9[/tex]

[tex] |72-78.9| = 6.9[/tex]

[tex] |79-78.9| = 0.1[/tex]

[tex] |80-78.9| = 1.1[/tex]

[tex] |83-78.9| = 4.1[/tex]

[tex] |93-78.9| = 14.1[/tex]

[tex] |94-78.9| = 15.1[/tex]

[tex] |95-78.9| = 16.1[/tex]

[tex] MAD = \frac{\sum_{i=1}^n |X_i -\bar X|}{n}[/tex]

And replacing we got:

[tex] MAD =\frac{16.9+15.9+10.9+6.9+0.1+1.1+4.1+14.1+15.1+16.1}{10}= 10.12[/tex]

And the best anwer is

10.12

Step-by-step explanation:

We have the following data given:

62 63 68 72 79 80 83 93 94 95

And we need to begin finding the mean with the following formula:

[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]

And replacing we got:

[tex] \bar X = \frac{62+63+68+72+79+80+83+93+94+95}{10}= 78.9[/tex]

Now we can find the mean absolute deviation like this:

[tex] |62-78.9| = 16.9[/tex]

[tex] |63-78.9| = 15.9[/tex]

[tex] |68-78.9| = 10.9[/tex]

[tex] |72-78.9| = 6.9[/tex]

[tex] |79-78.9| = 0.1[/tex]

[tex] |80-78.9| = 1.1[/tex]

[tex] |83-78.9| = 4.1[/tex]

[tex] |93-78.9| = 14.1[/tex]

[tex] |94-78.9| = 15.1[/tex]

[tex] |95-78.9| = 16.1[/tex]

And finally we can find the mean abslute deviation with the following formula:

[tex] MAD = \frac{\sum_{i=1}^n |X_i -\bar X|}{n}[/tex]

And replacing we got:

[tex] MAD =\frac{16.9+15.9+10.9+6.9+0.1+1.1+4.1+14.1+15.1+16.1}{10}= 10.12[/tex]

And the best anwer is

10.12